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Abstract

A new method for calculating the free vibration frequencies of a thin circular cylindrical shell is presented, based on

Flügge’s shell theory equations for orthotropic materials. A general displacement representation is introduced, and a type

of coupled polynomial eigenvalue problem is developed in present study. Numerical examples are given for isotropic and

orthotropic shells. Comparison with that from classical dynamic approach is studied for frequency of an isotropic shell.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The free vibration problems of thin circular cylindrical shells have been of great interest to many structural
engineers in recent years. Many investigations following the pioneering work of Arnold and Warburton [1,2]
have been summarized by Leissa [3]. Methods of solution for shell vibrations have ranged from the
approximate energy methods used by Arnold and Warburton [1,2] and by Sharma and Johns [4,5] to the exact
solutions as studied by Forsberg [6–8], Warburton [9], Warburton and Higgs [10] and Goldman [11]. The
circular cylindrical shell supported at both ends by shear diaphragms (SD–SD) has received the most attention
in the literatures. This is due to the fact that one simple form of the solutions to the eighth-order differential
equations of motion is also capable of satisfying the SD–SD boundary conditions exactly. The frequency
equation is a polynomial of order six in shell frequency parameter.

However, only a few papers are devoted to the study of the vibration characteristics of cylindrical shells with
different boundary conditions at the two ends. Authors of Refs. [6–11] have chosen exponential functions for
the modal displacements along the axial direction, substituted them into the equations of motion and then
enforced the eight specified boundary conditions. This leads to an eighth-order algebraic equation and an
eighth-order frequency determinant which are coupled together. The simultaneous solution of these two
systems of equations involves extremely laborious computation as pointed out by Leissa [3].

In this paper, a general type of displacement of shell is used for free vibration analysis. A different eighth-
order characteristic equation is acquired. The equation have 8 roots, which the imaginary branch represent the
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

Ex, Ey Young’s moduli, axial and circumferen-
tial directions, respectively

G shear modulus
i i2 ¼ �1
m number of axial half-waves
n number of circumferential waves
P, p, T xial, circumferential and torsional pres-

tresses, respectively
R, h, L radius, thickness, length of shell

t time
u, n, w axial, circumferential, radial displace-

ments
x axial coordinate
z radial coordinate, positive inward
nx, ny Poisson’s ratios, axial and circumferen-

tial directions, respectively
y circumferential coordinate
r mass density of shell wall material
o ( ¼ 2pf) circular frequency (rad/s)
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free vibration frequency with shear diaphragm boundary conditions. Some numerical examples are given in
this paper. The results obtained by this method are compared with those from classic method.

2. Formulation of problem

Consider the orthotropic circular cylindrical shell as shown in Fig. 1. Its geometry is described by R, the
radius of the shell middle surface, and h, the thickness of the shell. The material is linearly elastic. Suppose that
the axial and circumferential directions are principal axes of the orthotropic material. There exists the relation

nxEy ¼ nyEx, (1)

where Ex, Ey are Young’s moduli and nx ,ny are Poisson’s ratios in the axial and circumferential directions.
Following Flügge’s [12] exact derivation for the buckling of cylindrical shells, the differential equations of

motions for free vibration become:

L11uþ L12nþ L13w ¼ rh
q2u

qt2
; L21uþ L22nþ L23w ¼ rh

q2v
qt2

,

L31uþ L32nþ L33w ¼ rh
q2w

qt2
, (2)

where

L11 ¼ Dx � Pð Þ
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Fig. 1. An orthotropic circular cylindrical shell.
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L22 ¼ Dxy þ
3Kxy
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where P, p and T are axial, circumferential and torsional prestresses, respectively. The quantities Dx, Dy, and
Dxy are extensional rigidities; Kx, Ky, and Kxy are flexural rigidities. These are defined as follows:

Dx ¼ Exh=ð1� nxnyÞ; Dy ¼ Eyh=ð1� nxnyÞ; Dxy ¼ Dxy ¼ Gh,

Kx ¼ Exh3=12ð1� nxnyÞ; Ky ¼ Eyh
3=ð1� nxnyÞ; Kxy ¼ Gh3=12, (3)

where G is the shear modulus.
Assuming solutions of Eq. (2) in the form

u ¼ Aelxeinyeiot; n ¼ Belxeinyeiot; w ¼ Celxeinyeiot, (4)

where A, B, C and l are complex amplitudes, n is number of circumferential waves. i2 ¼ �1. o is the frequency
of shell (rad/s). Eq. (4) is the most general solutions of the problem. If one selects the real parts or imaginary
parts of right hand of this equation, a conventional assumed solution for arbitrary boundary conditions is
obtained (e.g. Ref. [6]). Thus, the solutions given in Eq. (4) are compatible with all possible boundary
conditions. Using Eq. (4) in Eq. (2) one can obtain a system of equation of the form

Q½ �

A

B

C

8><
>:

9>=
>; ¼ 0f g. (5)

The elements of matrix Q are given in Appendix A. For nontrivial solution of Eq. (5), one requires

det ð½Q�Þ ¼ 0, (6)

which is the characteristic equation of the system. Eq. (6) can be rewritten as

g8l
8
þ g7l

7
þ g6l

6
þ g5l

5
þ g4l

4
þ g3l

3
þ g2l

2
þ g1lþ g0 ¼ 0, (7)

where

g ¼ g h;R; n; nx; ny;Ex;Ey;G;oð Þ.

Eq. (7) is a polynomial l eigenvalue problem of order 8. In this equation, g8, g6, g4, g2 and g0 are real
numbers, while g7, g5, g3 and g1 are pure imaginary numbers. It should be noted that, the eighth-order
characteristic equation obtained here is different from those of Refs. [6–11], where g7, g5, g3 and g1 vanished.
For the usual range of shell parameter and nX1, the eight roots of Eq. (7) have the form

l1; �l1; l2i; �l2i; l3 þ l4i; l3 � l4i; �l3 þ l4i; �l3 � l4i, (8)

where li (i ¼ 1–4) are real, positive numbers.
Nondimensional frequency parameter is defined as follows:

O2 ¼
rR2 1� nxnyð Þ

Ex

o2. (9)
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3. Numerical examples and discussion

The algorithm used for root search procedure of determinantal equation (7) is Newton–Raphson
iteration scheme in the complex domain. For an isotropic shell, the roots of Eq. (7) are computed for following
cases:
i)
 with zero initial stress state;

ii)
 with hydrostatic pressure, P ¼ 0.5pR.
The data of the shell are: R/h ¼ 100, n ¼ 0.3, n ¼ 4, r ¼ 7800 kg/m3.
The results are shown in Figs. 2–4. An orthotropic circular cylindrical shell example is given in Fig. 5. With

the increase of frequency, l1 vary smoothly, where l2 increase. The existence of hydrostatic pressure can
enlarge the amplitude of l2, and there is a light decrease for l3 and l4.

A shell’s vibration under torsional prestress is presented in Fig. 4. The characteristics of shell under
torsional force are slightly different from under circumferential prestress [3,12]. Thus, the l2 root has irregular
variation. Furthermore, there are jumps for l1 and l2 in Fig. 5, an orthotropic shell’s results without any
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prestresses. The characteristic of an orthotropic shell can be quite different from that of an isotropic shell,
which can be seen from Fig. 5. This performance is just due to shell’s orthotropy, i.e. material parameters.

There are 136 combinations of ‘‘simple’’ boundary conditions possible for a closed circular cylindrical shell
[3]; most of the results are available for a single one of these cases—when both ends are supported by shear
diaphragms. The displacement function in this paper is a general expression for any kind of these 136
boundary conditions. Usually, gi (i ¼ 1,2,y8) are not zeros for simple edge conditions in static problem and l
is complex number.

As for dynamic problem, there will always be at least two roots of the form �l2i. After study, when it occurs
that any one of those initial stresses acting individually, there always will be a imaginary root such that
il2 ¼ impR=L. The modes associated with a pure imaginary l2 conform to the homogenous end conditions of
a finite shell of length L given by

n ¼ w ¼ Nx ¼Mx ¼ 0; x ¼ 0;L, (10)

where m is number of axial half-wave.
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This is familiarly knows as shear diaphragm (SD–SD) condition, often loosely called the simply supported
condition, and is the most widely used of the shell boundary conditions. Physically, this corresponds to an end
supported by means of an end plate which is highly flexible in the z-direction as well as in bending but which
has a large stiffness in its own plane. The l2 imaginary mode being waveform-like, it obviously implies that the
shell maintains an adjacent equilibrium configuration represented by this mode which is identical to the
adjacent equilibrium position referred in classical vibration analysis. In this case, the vibration mode of shell
along axial direction can be expressed in cosine or sine forms, which are the traditional expressions in SD–SD
solutions.

Therefore, the l2 imaginary mode covering the entire frequency range in the l� O2 plane represents the free
vibration of all lengths (that is, l ¼ 0 to N) with shear diaphragm boundary conditions. The other three
branches represent those remaining 135 cases of boundary conditions.

The shell length L can be determined for given n, l2 and structural parameters. In order to study the
applicability of present approach, some salient comparisons are indicated in Table 1 for an isotropic shell. The
results of Leissa [3] are calculated from three-dimensional theory, while Li and Chen [13] used Flügge’s
classical shell theory. The results from present approach should be identical to that from Ref. [13] for the same
problem, theoretically. The present analysis and that of Ref. [13] used the same shell theory. As for SD–SD
boundary condition, the frequency equation is a polynomial of order 6 in shell frequency parameter. A
standard exact method for polynomial roots is used in Ref. [13]. The present solution for Eq. (7) is
Newton–Raphson iteration, a numerical solution. Thus, there will be slight discrepancy between two methods.
Table 1

Frequency comparisons (n ¼ 0.3)

This paper Other literatures

Initial stress R/h n O2 il2 L
mR
¼ p
jl2 j

� �
L

mR
O2 Refer to Ref.

P ¼ p ¼ T ¼ 0 100 4 4� 10�2 i2.05539 1.52846 1.52846 4.000067� 10�2 [13]

p/D ¼ 10�4

P ¼ 0.5pR, 100 4 9� 10�2 i2.7456888 1.1441911 1.1441911 9.010458� 10�2 [13]

T ¼ 0,

P ¼ p ¼ T ¼ 0 20 3 1.68691� 10�2 i0.7775271 4.0404927 4.0 1.68691� 10�2 [1, p. 55]

P ¼ p ¼ T ¼ 0 500 4 1.25264� 10�3 i0.7853785 4.0000999 4.0 1.25264� 10�3 [1, p. 55]
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There are also slight difference between three-dimensional elastic theory and Flügge’s shell theory, as shown in
Table 1. From this table, it can be concluded that the present method has high accuracy.

Another applicability of present approach is illustrated in Fig. 6. In many research, (e.g. Refs. [4–6]), the
characteristics of shell vibration are shown as length–radius-ratio versus frequency parameter. Variation of the
frequency parameter versus axial wavelength parameter L/mR is presented in Fig. 6.

For a fixed number of circumferential waves the frequency increases monotonically with axial half-waves,
for all values of shell parameters (R/h, L/R, n) and for all boundary conditions. The value of n which
corresponds to the minimum frequency depends strongly upon length-to-radius ratio. This is clearly seen in
Fig. 6 for SD–SD boundary condition. Frequency envelop can also be drawn from this figure easily.

4. Conclusion

A new method for calculating the free vibration frequencies of a thin circular cylindrical shell is presented,
based on Flügge’s shell theory equations for orthotropic materials. A general displacement representation is
introduced, and a new type of coupled polynomial eigenvalue problem is developed in present study.

The merit of this approach is that, it presents another general form of separation of variables in circular
cylindrical shell analysis for arbitrary boundary conditions. The general solutions of the problem can be
reduced to conventional assumed solution, which has been used in many literatures. In order to study the
applicability of present method, numerical examples are given for isotropic and orthotropic shells.
Comparison with that from classical dynamic approach is studied for frequency of an isotropic shell. The
modes associated with a pure imaginary l2 conform to the homogenous end conditions of a finite shell. The
present method has high accuracy.

Appendix A

Elements of Q matrix:

Q11 ¼ l2 Dx � Pð Þ � n2 Dxy

R2
þ

Kxy

R4
�

p

R

� �
� i2

T

R
lnþ rho2; Q12 ¼ i

nyDx þDxy

R
ln,

Q13 ¼ �
nyDx

R
� p

� �
lþ

Kx

R
l3 þ

Kxy

R3
ln2; Q21 ¼ Q12,

Q22 ¼ Dxy þ
3Kxy

R2
� P

� �
l2 �

Dy

R2
�

p

R

� �
n2 � i2

T

R
lnþ rho2,

Q23 ¼ i �
Dy

R2
þ

p

R

� �
nþ i

nxKy þ 3Kxy

R2
l2nþ 2

T

R
l; Q31 ¼ �Q13; Q32 ¼ �Q23,

Q33 ¼ �Kxl
4
þ

2nxKy þ 4Kxy

R2
l2n2 �

Ky

R4
n4 þ

2Ky

R4
þ

p

R

� �
n2 �

Dy

R2
þ

Ky

R4

� �
� Pl2 � i2

T

R
lnþ rho2.
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